

BPC-iMX6ULL-02 User Manual

Version: V1.0 (2022-05)

Editor: Polyhex Technology Company Limited (<u>http://www.polyhex.net/</u>)

Declaration of conformity

CE This product has passed the CE test for environment specifications.

FCC This equipment has been tested and found to comply with the FCC rules.

RoHS This product has passed the RoHS test

CCC This product has passed the CCC test

Technical support and assistance

- 1. Visit polyhex website <u>http://www.polyhex.net/</u> where you can find the latest information about the product.
- 2. Contact your distributor, sales representative or polyhex's customer service center for technical support if you need additional assistance.Please have the following info ready before you call:
 - Product name
 - Description of your peripheral attachments
 - Description of your software(operating system, version, application software, etc.)
 - A complete description of the problem
 - The exact wording of any error messages

Safety instructions

- 1. Read these safety instructions carefully.
- 2. Keep this User Manual for later reference.
- 3. Disconnect this equipment from any DC outlet before cleaning. Use a damp cloth. Do not use liquid or spray detergents for cleaning.
- 4. Keep this equipment away from humidity.
- 5. Put this equipment on a reliable surface during installation. Dropping it or letting it fall may cause damage.
- 6. Make sure the voltage of the power source is correct before connecting the equipment to the power outlet.
- 7. The openings on the enclosure are for air convection. Protect the equipment from overheating. DO NOT COVER THE OPENINGS.
- 8. Position the power cord so that people cannot step on it. Do not place anything over the power cord.
- 9. If the equipment is not used for a long time, disconnect it from the power source to avoid damage by transient overvoltage.
- 10. Never pour any liquid into an opening. This may cause fire or electrical shock.
- 11. Never open the equipment. For safety reasons, the equipment should be opened only by qualified service personnel.
- 12. If one of the following situations arises, get the equipment checked by service personnel:
 - The power cord or plug is damaged.

Liquid has penetrated into the equipment.

The equipment has been exposed to moisture.

The equipment does not work well, or you cannot get it to work according to the user's manual.

The equipment has been dropped and damaged.

- The equipment has obvious signs of breakage.
- 13. DO NOT LEAVE THIS EQUIPMENT IN AN ENVIRONMENT WHERE THE STORAGE TEMPERATURE MAY GO BELOW 0° C (0° F) OR ABOVE 70° C (158° F). THIS COULD DAMAGE THE EQUIPMENT. THE EQUIPMENT SHOULD BE IN A CONTROLLED ENVIRONMENT.
- 14. Due to the sensitive nature of the equipment it must be stored in a restricted access location, only accessible by qualified engineers.

DISCLAIMER: Polyhex disclaims all responsibility for the accuracy of any statement of these instructions.

Contents

Chapter 1 Introduction
1.1 Product introduction
1.2 Hardware specifications
1.3 Safety Precaution
Chapter 2 Hardware Function
2.1 Overview
2.2 LED Status Indicator
2.3 Reset button
2.4 SIM slot10
Chapter 3 wiring and installation12
3.1 Wiring1
3.2 Installation
Chapter 4 Software Application Examples1
4.1 Remote login SSH1
4.2 Use of Ethernet
4.3 Use of Wifi
4.4 Use of Bluetooth
4.5 Use of USB
4.5 Verification of RS23222
4.6 Verification of RS48523
4.7 CAN functional verification24
4.8 Verification of DI25
4.9 Verification of DO
4.10 Use of 4G Module26
4.11 Use of Lora Module
4.12 Verification of RTC29

Chapter 1 Introduction

1.1 Product introduction

BPC-iMX6ULL-02 is a RISC architecture platform with high performance, wide temperature and flexible design. It serves as a gateway connecting inverters and remote monitoring center in power and energy application, which plays an important role.

1.2 Hardware specifications

1.2.1 General

- Certification: CE, FCC, RoHS, CCC
- Dimensions(W x D x H):107mm x 107mm x 35mm
- Power Requirements:DC12V1A
- Weight:0.375kg
- OS Support: buildroot-2021.11-rc3, Yocto 3.2.1

1.2.2 System Hardware

- CPU: NXP i.MX 6ULL(default), support NXP i.MX 6UltraLite
- Memory: 512MB DDR3
- Indicators: LED for Power, LAN(LINK, ACT), STAT LED, SYS LED
- Storage: 8GB eMMC(default)
- SIM Slot: 1 x Micro-SIM slot

1.2.3 System Software

- **OS Support**: buildroot-2021.11-rc3, Yocto 3.2.1
- **Protocol support**: Modbus, IEC-60870-101(master)/104(slave)
- Programming:C

1.2.4 I/O Interface

- Serial ports: 2 x Physically-isolated RS-232, 2 x Physically-isolated RS-485
- Serial port Speed:115200bps
- LAN: 2 x 10M/100Mbps Base-T RJ-45 ports
- USB Ports: 1 x USB, Rev. 2.0 Host(default)
- SIM: 1 x Micro SIM
- CAN: 2 x Physically-isolated CAN
- **LED**: 1 x Power LED, 2 x GPIO LED(functions can be customized)
- Reset: 1 x Reset
- **SMA RF**: 2 x SMA RF ANT(WIFI ANT for default, choose one from 4G/LoRa/UWB(optional))
- **LoRa**: 1 x LoRa(optional)
- UWB: 1 x UWB(optional)

1.2.5 Environment

- **Humidity**: 5 ~ 95%(non-condensing)
- Operating Temperature: 0~70°C
- Storage Temperature: -40~85°C
- Safety Cert. Temperature: -20~50°C (-4~122°F)

1.3 Safety Precaution

The following messages informs how to make each connection. In most cases, you will simply need to connect a standard cable.

Warning!

Always disconnect the power cord from your chassis whenever you are not working on it. Do not connect while the power is on. A sudden rush of power can damage sensitive electronic components. Only experienced electronics personnel should open the chassis.

Caution!

Always ground yourself to remove any static electric charge before touching BPC-iMX6ULL-02. Modern electronic devices are very sensitive to electric charges.Use a grounding wrist strap at all times.Place all electronic components on a static-dissipative surface or in a static-shielded bag.

Chapter 2 Hardware Function

2.1 Overview

The following figures show the indicators and connectors on BPC-iMX6ULL-02.

Figure1 BPC-iMX6ULL-02 overview

2.2 LED Status Indicator

2.2.1 System Status Indicator

Figure2 system status indicator

LED	Status	Description
PWR (not in control)	lighting	Power is on
	off	Power if off
STAT (in control)	blinking	Power is on
	off	Power is off
SYS (not in control)	Lighting	Power is on
	off	Power is off

2.2.2 Ethernet Status Indicator

Figure3 Ethernet Status Indicator

LED	Color	Description
Active1	Green	Lighting, the Ethernet cable
		is plugged in
Link1	Orange	Blinking, Ethernet data
		being transmitted
Active2	Green	Lighting, the Ethernet cable
		is plugged in
Link2	orange	Blinking, Ethernet data being
	-	transmitted

2.3 Reset button

Figure4 reset button

Press reset button continuously for 6 seconds to reset the system

2.4 SIM slot

Figure5 SIM slot

When insert and unplug the SIM from the SIM slot, please take care of the direction which has been indicated on the box.

Chapter 3 wiring and installation 3.1 Wiring

3.1.1 Power Supply Wiring

Figure6 Power supply wiring

BPC-iMX6ULL-02 supports power input ranging from 9 VDC to 24 VDC.

DC Power Input Connector Pin Definition		
Function	Pin	description
Power input	+	DC power input positive pin
	-	DC Power input negative pin
DC IN	DC IN	DC Power input pin

3.1.2 Communication Ports

3.1.2.1 RS-232 Serial Ports

Figure7 RS-232 Serial Ports

Polyhex Technology Co., Ltd.

RS-232 Serial Ports(Pin Assignments)		
Function	pin	description
RS232-1	T1	Transfer data1
	G1	GND1
	R1	Receive data1
RS232-2	T2	Transfer data2
	G2	GND2
	R2	Receive data2

3.1.2.2 RS-485 Serial Ports

Figure8 RS-485 Serial Ports

RS-485 Serial Ports(Pin Assignments)		
Function	pin	description
RS485-1	A1+	Noninverting receiver input1 and Noninverting driver output1
	C1	Ground1
	B1-	Inverting receiver input1 and inverting driver output1
RS485-2	A2+	Noninverting receiver input2 and Noninverting driver output2
	C2	Ground2
	B2+	Inverting receiver input2 and inverting driver output2

3.1.2.3 USB Connector

USB Connector Pin Assignment	
Pin	Signal
1	VCC
2	DATA-
3	DATA+
4	GND

Default: UART-MODE

3.1.2.4 LAN Connectors(LAN1~LAN2)

LAN Connector Pin Assignments		
Pin	Assignment	Description
1	TD+	Transmit+
2	TD-	Transmit-
3	RD+	Receive+
4	N/C	Not used
5	N/C	Not used
6	RD-	Receive -
7	N/C	Not used
8	N/C	Not used

3.1.2.5 Can Ports(CAN 1~2)

Figure9 CAN ports

CAN Ports(Pin Assignments)		
function	pin	Description
CAN1	H1	High-level CAN bus line1
	C1	Ground1
	L1	Low-level CAN bus line1
CAN2	H2	High-level CAN bus line2
	C2	Ground2
	L2	Low-level CAN bus line2

3.1.2.6 DI/DO Ports

Figure10 DI/DO ports

DI/DO Ports(Pin Assignments)		
function	pins	description

DI	D1+	Digital input1 positive
	DI-	Digital input negative
	D2+	Digital input2 positive
DO	NO	Normal open
	СМ	Common
	NC	Normal connected

3.2 Installation

• Check the BPC-iMX6ULL-02 box pc, Wi-Fi antenna and power adapter after you receive the product.

Figure11 antenna

• Connect the WIFI antenna to the WIFI antenna interface

Figure13 power adapter

Figure 14 BPC-iMX6ULL-02 with antenna

• Connect the power adapter to the DC interface of BPC-iMX6ULL-02

When you find that the SYS LED and PWR LED are lighting, and the STAT LED is blinking, it means the gateway has been powered on.

Chapter 4 Software Application Examples

4.1 Remote login SSH

Connect the device to the LAN, enter the router background, query the IP address obtained by the device according to the MAC address, ssh to the device background through "putty" or other tools, access the account: root, and the password is blank by default; as shown below:

Change root password command: #passwd root

Enter the new password twice in a row:

4.2 Use of Ethernet

query ip command:

#ip a

As shown above: eth0 network card corresponds to the network port of the device silkscreen

"eth1" (left side)

The eth1 network card corresponds to the network port of the device silkscreen "eth2" (right side)

Application command: #ping -i eth0 192.168.2.254

ping -i eth0 192.168.2.254
ping: option argument contains garbage: eth0
ping: this will become fatal error in the future
PING 192.168.2.254 (192.168.2.254) 56(84) bytes of data.
64 bytes from 192.168.2.254: icmp seq=1 ttl=254 time=1.27 ms
64 bytes from 192.168.2.254: icmp_seq=2 ttl=254 time=0.733 ms
64 bytes from 192.168.2.254: icmp_seq=3 ttl=254 time=1.34 ms
64 bytes from 192.168.2.254: icmp_seq=4 ttl=254 time=1.19 ms
64 bytes from 192.168.2.254: icmp_seq=5 ttl=254 time=1.19 ms
64 bytes from 192.168.2.254: icmp_seq=6 ttl=254 time=1.17 ms
64 bytes from 192.168.2.254: icmp_seq=7 ttl=254 time=1.20 ms
64 bytes from 192.168.2.254: icmp seq=8 ttl=254 time=1.17 ms
64 bytes from 192.168.2.254: icmp seq=9 ttl=254 time=1.16 ms
64 bytes from 192.168.2.254: icmp seq=10 ttl=254 time=1.19 ms
64 bytes from 192.168.2.254: icmp seq=11 ttl=254 time=1.21 ms
64 bytes from 192.168.2.254: icmp_seq=12 ttl=254 time=1.23 ms
64 bytes from 192.168.2.254: icmp_seq=13 ttl=254 time=1.20 ms
64 bytes from 192.168.2.254: icmp_seq=14 ttl=254 time=1.23 ms
64 bytes from 192.168.2.254: icmp_seq=15 ttl=254 time=1.22 ms
64 bytes from 192.168.2.254: icmp seq=16 ttl=254 time=1.23 ms
64 bytes from 192.168.2.254: icmp_seq=17 ttl=254 time=1.20 ms
64 bytes from 192.168.2.254: icmp_seq=18 ttl=254 time=1.23 ms
64 bytes from 192.168.2.254: icmp_seq=19 ttl=254 time=1.19 ms

4.3 Use of Wifi

Edit the configuration file and set the "SSID" and connection password of the connected router:

#vi /etc/wpa_supplicant.conf

#wpa_supplicant -Dnl80211 -iwlan0 -c/etc/wpa_supplicant.conf &

1# AT /Ecc/wha_subbiceanc.com
<pre># wpa_supplicant -Dn180211 -iwlan0 -c/etc/wpa_supplicant.conf &</pre>
Successfully initialized wpa_supplicant
rfkill: Cannot open RFKILL control device
wlan0: Trying to associate with SSID 'BH123'
wlan0: Associated with 0c:d8:6c:a9:cc:08
<pre>wlan0: CTRL-EVENT-CONNECTED - Connection to 0c:d8:6c:a9:cc:08 completed [id=0 id_str=]</pre>
wlan0: CTRL-EVENT-SUBNET-STATUS-UPDATE status=0

udhcpc -i wlan0 –n

The ip address assigned to the obtained router is obtained as follows

```
# udhcpc -i wlan0 -n
udhcpc: started, v1.34.1
udhcpc: broadcasting discover
udhcpc: broadcasting select for 192.168.10.8, server 192.168.10.254
udhcpc: lease of 192.168.10.8 obtained from 192.168.10.254, lease time 86400
deleting routers
adding dns 202.96.134.133
adding dns 114.114.114.114
#
```

4.4 Use of Bluetooth

Start bluetooth, and match the bluetooth command as follows:

#hciconfig hci0 up
#bluetoothctl
power on
agent on
default-agent
scan on
pair yourDeviceMAC
<pre># bluetoothctl</pre>
Agent registered
[CHG] Controller AC:6A:A3:15:23:40 Pairable: yes
[bluetooth] # power on
Changing power on succeeded
[bluetooth]# agent on
Agent is already registered
[bluetooth]# default-agent
Default agent request successful
[bluetooth]# scan on
Discovery started
[CHG] Controller AC:6A:A3:15:23:40 Discovering: yes
[NEW] Device 6F:77:E4:55:30:6B 6F-77-E4-55-30-6B
[NEW] Device 58:1F:3E:7C:17:CE 58-1F-3E-7C-17-CE
[NEW] Device 61:8D:F0:19:75:3E 61-8D-F0-19-75-3E
[NEW] Device 68:7A:15:E7:AD:CA 68-7A-15-E7-AD-CA
[NEW] Device 78:21:08:79:5C:85 78-21-08-79-5C-85
[NEW] Device 6F:66:07:AC:13:D7 6F-66-07-AC-13-D7
[NEW] Device 68:E4:6A:8E:99:74 68-E4-6A-8E-99-74
[NEW] Device 54:AF:B7:03:4D:69 54-AF-B7-03-4D-69
[NEW] Device 74:5F:D2:47:FC:43 74-5F-D2-47-FC-43

[bluetooth] # pair 4C:02:20:3C:2A:6C										
Attempting to pair with 4C:02:20:3C:2A:6C										
[CHG] Device 4C:02:20:3C:2A:6C Connected: yes										
Request confirmation										
[agent] Confirm passkey 381184 (yes/no): yes										
[CHG] Device 4C:02:20:3C:2A:6C Modalias: bluetooth:v038Fp1200d1436										
[CHG] Device 4C:02:20:3C:2A:6C UUIDs: 00001105-0000-1000-8000-00805f9b34fb										
[CHG] Device 4C:02:20:3C:2A:6C UUIDs: 0000110a-0000-1000-8000-00805f9b34fb										
[CHG] Device 4C:02:20:3C:2A:6C UUIDs: 0000110c-0000-1000-8000-00805f9b34fb										
[CHG] Device 4C:02:20:3C:2A:6C UUIDs: 00001112-0000-1000-8000-00805f9b34fb										
[CHG] Device 4C:02:20:3C:2A:6C UUIDs: 00001115-0000-1000-8000-00805f9b34fb										
[CHG] Device 4C:02:20:3C:2A:6C UUIDs: 00001116-0000-1000-8000-00805f9b34fb										
[CHG] Device 4C:02:20:3C:2A:6C UUIDs: 0000111f-0000-1000-8000-00805f9b34fb										
[CHG] Device 4C:02:20:3C:2A:6C UUIDs: 0000112f-0000-1000-8000-00805f9b34fb										
[CHG] Device 4C:02:20:3C:2A:6C UUIDs: 00001132-0000-1000-8000-00805f9b34fb										
[CHG] Device 4C:02:20:3C:2A:6C UUIDs: 00001200-0000-1000-8000-00805f9b34fb										
[CHG] Device 4C:02:20:3C:2A:6C UUIDs: 00001800-0000-1000-8000-00805f9b34fb										
[CHG] Device 4C:02:20:3C:2A:6C UUIDs: 00001801-0000-1000-8000-00805f9b34fb										
[CHG] Device 4C:02:20:3C:2A:6C UUIDs: 0000fdaa-0000-1000-8000-00805f9b34fb										
[CHG] Device 4C:02:20:3C:2A:6C UUIDs: 98b97136-36a2-11ea-8467-484d7e99a198										
[CHG] Device 4C:02:20:3C:2A:6C ServicesResolved: yes										
[CHG] Device 4C:02:20:3C:2A:6C Paired: yes										
Pairing successful										

4.5 Use of USB

Access the U disk in FAT32 format, the system will automatically mount it to the /mnt path #df -h

# df b					
# dl -n					
Filesystem	Size	Used	Available	Use∛	Mounted on
/dev/root	4.8G	60.7M	4.4G	1%	/
devtmpfs	163.9M	0	163.9M	0%	/dev
tmpfs	244.4M	0	244.4M	0%	/dev/shm
tmpfs	244.4M	68.0K	244.4M	0%	/tmp
tmpfs	244.4M	40.0K	244.4M	0%	/run
/dev/mmcblk1p3	1.7G	60.0K	1.6G	0%	/recovery
/dev/sda1	28.7G	544.0K	28.7G	0%	/mnt
+					

If the U disk is not mounted, you can mount the U disk with the following command: #fdisk -I

Query the U disk letter:

a mounto / det/ bdd1 / mito								
# fdisk -1								
Disk /dev/mmcblk1: 7456 1	MB, 7818182656 by	tes, 15269888	sectors					
238592 cylinders, 4 head	s, 16 sectors/tra	ck						
Units: sectors of 1 * 51;	2 = 512 bytes							
Device Boot StartCl	HS EndCHS	StartLBA	EndLBA	Sectors	Size Id	Type		
/dev/mmcblk1p1 320,0,	1 959,3,16	20480	1044479	1024000	500M c	Win95	FAT32 (L
BA)								
/dev/mmcblk1p2 768,0,1	1 639,3,16	1228800	11509759	10280960	5020M 83	Linux		
/dev/mmcblk1p3 640,0,3	1 1023,3,16	11509760	15269887	3760128	1836M 83	Linux		
Disk /dev/sda: 29 GB, 30	784094208 bytes,	60125184 sect	ors					
3742 cylinders, 255 head	s, 63 sectors/tra	ck						
Units: sectors of 1 * 513	2 = 512 bytes							
Device Boot StartCHS	EndCHS St	artLBA En	dLBA Sect	ors Size	Id Type			
/dev/sda1 0,0,33	1023,254,63	32 6012	5183 60125	152 28.6G	c Win9	5 FAT32	2 (LBA)	
#								-

Mounting #mount /dev/sda1 /mnt

mount /dev/sda1 /mnt

# mound / acv/ baar /	ilui o				
# df -h					
Filesystem	Size	Used	Available	Use €	Mounted or
/dev/root	4.8G	60.8M	4.4G	18	
devtmpfs	163.9M	0	163.9M	0 %	/dev
tmpfs	244.4M	0	244.4M	0%	/dev/shm
tmpfs	244.4M	52.0K	244.4M	0%	/tmp
tmpfs	244.4M	36.0K	244.4M	0%	/run
/dev/mmcblk1p3	1.7G	60.0K	1.6G	03	/recovery
/dev/sda1	28.7G	544.0K	28.7G	0%	/mnt
#					

Access the U disk and copy files:

#cd	/mr	۱İ

cd /mnt/

ls

BMB07-factorytest-V1.0.4.rar System Volume Information

cp BMB07-factorytest-V1.0.4.rar /root/

4.5 Verification of RS232

Two sets of RS232 are recognized under the system as: /dev/ttymxc2 and /dev/ttymxc3

# IS /dev/ttymxc* -1										
crww	1 root	root	207,	16	Nov	10	00:58	/dev/ttymxc0		
crw	1 root	root	207,	18	Jan	1	1970	/dev/ttymxc2		
crw	1 root	root	207,	19	Jan	1	1970	/dev/ttymxc3		
crw	1 root	root	207,	20	Jan	1	1970	/dev/ttymxc4		
crw	1 root	root	207,	21	Jan	1	1970	/dev/ttymxc5		
crw	1 root	root	207,	22	Jan	1	1970	/dev/ttymxc6		
crw	1 root	root	207,	23	Jan	1	1970	/dev/ttymxc7		

ttymxc2 corresponds to the serial port of the device silkscreen "RS232-1" (left side) ttymxc3 corresponds to the serial port of the device silkscreen "RS232-2" (right side) The example adopts two sets of RS232 to send and receive each other for verification, and the wiring method is as follows

RS232-1_T1 ----- RS232-2_R2 RS232-1_G1 ----- RS232-2_G2 RS232-1_R1 ----- RS232-2_T2

Command:

#uart_read /dev/ttymxc2 115200 &
#uart_write /dev/ttymxc3 115200 123
#uart_write /dev/ttymxc3 115200 123456
#killall uart_read
#uart_read /dev/ttymxc3 115200 &
#uart_write /dev/ttymxc2 115200 456
#uart_write /dev/ttymxc3 115200 456789

#killall uart read

uart read /dev/ttymxc3 115200 &
open/dev/ttymxc3 speed 115200 8n1
uart_write /dev/ttymxc2 115200 123
open /dev/ttymxc2 speed 115200 8n1
read [3] [123]
uart_write /dev/ttymxc2 115200 123456
open /dev/ttymxc2 speed 115200 8n1
read [6] [123456]
<pre># killall uart_read</pre>
[3]+ Terminated uart_read /dev/ttymxc3 115200
uart_read /dev/ttymxc2 115200 &
open /dev/ttymxc2 speed 115200 8n1
uart_write /dev/ttymxc3 115200 456
open /dev/ttymxc3 speed 115200 8n1
read [3] [456]
uart_write /dev/ttymxc3 115200 456789
open /dev/ttymxc3 speed 115200 8n1
read [6] [456789]
<pre># killall uart_read</pre>
[3]+ Terminated uart_read /dev/ttymxc2 115200

4.6 Verification of RS485

Two sets of RS485 are identified as /dev/ttymxc4 and /dev/ttymxc5 under the system

<pre># ls /dev/ttymxc* -l</pre>									
crww	1 root	root	207,	16 Nov	10	00:58	/dev/ttymxc0		
crw	1 root	root	207,	18 Nov	10	02:13	/dev/ttymxc2		
crw	1 root	root	207,	19 Nov	10	02:15	/dev/ttymxc3		
crw	1 root	root	207,	20 Jan	1	1970	/dev/ttymxc4		
crw	1 root	root	207,	21 Jan	1	1970	/dev/ttymxc5		
crw	1 root	root	207,	22 Jan	1	1970	/dev/ttymxc6		
crw	1 root	root	207,	23 Jan	1	1970	/dev/ttymxc7		
#									

ttymxc4 corresponds to the serial port of the device silkscreen "RS485-1" (left side) ttymxc5 corresponds to the serial port of the device silkscreen "RS485-2" (right side) The example adopts two groups of RS485 to send and receive each other for verification, and the wiring method is as follows

RS485-1_A1+ ----- RS485-2_A2+ RS485-1_C1 ----- RS485-2_C2 RS485-1_B1- ----- RS485-2_B2+

Command: #uart_read /dev/ttymxc4 115200 & #uart_write /dev/ttymxc5 115200 123 #uart_write /dev/ttymxc5 115200 123456

Polyhex Technology Co., Ltd. #killall uart read #uart read /dev/ttymxc5 115200 & #uart write /dev/ttymxc4 115200 456 #uart write /dev/ttymxc4 115200 456789 #killall uart read # uart_read /dev/ttymxc4 115200 & # open /dev/ttymxc4 speed 115200 8n1 # uart write /dev/ttymxc5 115200 123 open /dev/ttymxc5 speed 115200 8n1 read [3] [123] # uart_write /dev/ttymxc5 115200 123456 open /dev/ttymxc5 speed 115200 8n1 read [5] [12345] read [1] [6] # killall uart read [3]+ Terminated uart read /dev/ttymxc4 115200 # uart_read /dev/ttymxc5 115200 & # open /dev/ttymxc5 speed 115200 8n1 # uart_write /dev/ttymxc4 115200 456 open /dev/ttymxc4 speed 115200 8n1 read [3] [456] # uart_write /dev/ttymxc4 115200 456789 open /dev/ttymxc4 speed 115200 8n1 read [5] [45678] read [1] [9] #

4.7 CAN functional verification

Two sets of CAN are identified as can0 and can1 under the system # ip a 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 :: 1/128 scope host valid lft forever preferred lft forever can0: <NOARP,ECHO> mtu 16 qdisc noop state DOWN group default qlen 10 link/can 2: 3: can1: <NOARP,ECHO> mtu 16 qdisc noop state DOWN group default qlen 10 link/can 4: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1 000 link/ether 10:07:23:6d:c6:12 brd ff:ff:ff:ff:ff:ff inet 192.168.2.182/24 brd 192.168.2.255 scope global eth0 valid_lft forever preferred_lft forever inet6 fe80::1207:23ff:fe6d:c612/64 scope link valid lft forever preferred lft forever 5: eth1: <NO-CARRIER.BROADCAST.MULTICAST.UP> mtu 1500 gdisc pfifo fast state DOWN group default gl en 1000 link/ether 10:07:23:6d:c6:13 brd ff:ff:ff:ff:ff 6: sit0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN group default qlen 1000 link/sit 0.0.0.0 brd 0.0.0.0 7: wlan0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000 link/ether ac:6a:a3:15:23:3f brd ff:ff:ff:ff:ff:ff can0 corresponds to the can interface of the device silkscreen "can1" (left side)

can't corresponds to the can interface of the device silkscreen "can't (left side) can1 corresponds to the can interface of the device silkscreen "can2" (right side) The example adopts two groups of CAN to send and receive each other for verification, and the wiring method is as follows:

CAN_H1 ----- CAN_H2 CAN_L1 ----- CAN_L2

4.8 Verification of DI

Two sets of DIs are recognized as /dev/input/event1 and /dev/input/event2 under the system

<pre># ls /dev/input/event* -l</pre>										
crw	1	root	root	13,	64	Jan	1	1970	/dev/input/event0	
crw	1	root	root	13,	65	Nov	10	07:22	/dev/input/event1	
crw	1	root	root	13,	66	Nov	10	07:22	/dev/input/event2	
#										

DIN1 corresponds to the interface of the device silkscreen "D1+ & DI-" (left side) DIN2 corresponds to the interface of the device silk screen "D2+ & DI-" (right side) Verification method:

Take DIN1 as an example, draw a type-C socket as shown in the figure, input/disconnect a 5V voltage, query the message event, and you will get the following events;

#tail -f /var/log/message

# ta:	i1 -	-f /var	/log/mes	sages			
Nov 1			5 BMB-07	kern.warn	kernel: [614.270858]	polyhex_gpio_work:button down(din1_key): input_key = 251
Nov 1			7 BMB-07	kern.warn	kernel: [616.700731]	polyhex_gpio_work:button up(din1_key): input_key = 251
Nov	10 (7 BMB-07	kern.warn	kernel: [695.948949]	polyhex_gpio_work:button down(din1_key): input_key = 251
Nov :			5 BMB-07	kern.warn	kernel: [804.249303]	FAT-fs (sda1): Volume was not properly unmounted. Some data may be corrupt. Please run fsck.
Nov 1	10 (8 BMB-07	kern.warn	kernel: [977.059423]	polyhex_gpio_work:button up(din1_key): input_key = 251
Nov	10 (07:38:1	9 BMB-07	kern.warn	kernel: [978.588531]	polyhex_gpio_work:button down(din1_key): input_key = 251
Nov 1	10 (7 BMB-07	kern.warn	kernel: [986.408406]	polyhex_gpio_work:button_up(din1_key): input_key = 251
Nov :			0 BMB-07	kern.warn	kernel: [989.008287]	polyhex gpio work: button down (din1 key): input key = 251
Nov 1			5 BMB-07	kern.warn	kernel: [994.038097]	polyhex_gpio_work:button up(din1_key): input_key = 251
Nov	10 (07:39:4	5 BMB-07	auth.info	sshd[345]	: Accepted no:	ne for root from 192.168.10.168 port 61440 ssh2
Nov	10 0		1 BMB-07	kern.warn	kernel: [1120.003934]	polyhex_gpio_work:button down(din1_key): input_key = 251
Nov :	10 0	07:40:4	6 BMB-07	kern.warn	kernel: [1125.663776]	polyhex gpio work:button up(din1 key): input key = 251

4.9 Verification of DO

The default state of DO is "NC", and the connectivity between CM and NC can be measured by a multimeter;

The state can be switched by the following command # ph_ctl_gpio kv_coil_en_on (switch status is "NO") # ph_ctl_gpio kv_coil_en_off (switch state to "NC")

<pre># ph_ctl_gpio kv_coil_en_on</pre>
write command kv_coil_en_on size=13
<pre># ph_ctl_gpio kv_coil_en_off</pre>
write command kv_coil_en_off size=14
<pre># ph_ctl_gpio kv_coil_en_on</pre>
write command kv_coil_en_on size=13
<pre># ph_ctl_gpio kv_coil_en_off</pre>
write command ky_coil_en_off size=14
#

4.10 Use of 4G Module

Insert the SIM card, connect to the 4G module (take EC21ECGA-128-SSNS as an example), connect the antenna adapter cable, and support the external antenna.

The module is recognized as /dev/ttyUSB2 under the system, which can be verified by the serial debugging tool microcom

Command: #ifdown ppp0 #ifup ppp0

#ip a

fifdown ppp0
ifup ppp0
; ip a
<pre>:: lo: <loopback,up,lower_up> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000 link/loopback 00:00:00:00:00 brd 00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever</loopback,up,lower_up></pre>
<pre>?: can0: <noarp,echo> mtu 16 qdisc noop state DOWN group default qlen 10 link/can</noarp,echo></pre>
: can1: <noarp,echo> mtu 16 qdisc noop state DOWN group default qlen 10 link/can</noarp,echo>
<pre>:: eth0: <broadcast,multicast,up,lower_up> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000 link/ether 10:07:23:6d:c6:12 brd ff:ff:ff:ff:ff inet 192.166.2.182/24 brd 192.166.2.255 scope global eth0 valid_lft forever preferred_lft forever inet6 fe80::1207:23ff:fe6d:c612/64 scope link valid_lft forever preferred_lft forever</broadcast,multicast,up,lower_up></pre>
; eth1: <no-carrier,broadcast,multicast,up> mtu 1500 qdisc pfifo_fast state DOWN group default qlen 1000 link/ether 10:07:23:6d:c6:13 brd ff:ff:ff:ff:ff:ff</no-carrier,broadcast,multicast,up>
5: sit0@NONE: <noarp> mtu 1480 qdisc noop state DOWN group default qlen 1000 link/sit 0.0.0.0 brd 0.0.0.0</noarp>
I: wlan0: <broadcast,multicast> mtu 1500 qdisc noop state DOWN group default qlen 1000 link/ether ac:6a:a3:15:23:3f brd ff:ff:ff:ff:ff:ff</broadcast,multicast>
8: wwan0: <broadcast,multicast> mtu 1500 qdisc noop state DOWN group default qlen 1000 link/ether 26:43:fb:f3:15:66 brd ff:ff:ff:ff:ff:ff</broadcast,multicast>
<pre>.0: ppp0: <pointopoint,multicast,noarp,up,lower_up> mtu 1500 qdisc pfifo_fast state UNKNOWN group default qlen 3 link/ppp inet 10.214.138.254 peer 10.64.64.64/32 scope global ppp0 valid_lft forever preferred_lft forever</pointopoint,multicast,noarp,up,lower_up></pre>
Example:
<i>ŧ</i> ping -I ppp0 <u>www.baidu.com</u>

ping -I ppp0 www.baidu.co PING www.a.shifen.com (112.80.248.76) from 10.214.138.254 ppp0: 56(84) bytes of data. 64 bytes from 112.80.248.76 (112.80.248.76): icmp_seq=1 ttl=55 time=1206 ms 64 bytes from 112.80.248.76 (112.80.248.76): icmp_seq=1 ttl=55 time=1200 ms 64 bytes from 112.80.248.76 (112.80.248.76): icmp_seq=2 ttl=55 time=201 ms 64 bytes from 112.80.248.76 (112.80.248.76): icmp_seq=3 ttl=55 time=110 ms 64 bytes from 112.80.248.76 (112.80.248.76): icmp_seq=4 ttl=55 time=107 ms 64 bytes from 112.80.248.76 (112.80.248.76): icmp seq=5 ttl=55 time=105 ms 64 bytes from 112.80.248.76 (112.80.248.76): icmp_seq=6 ttl=55 time=104 ms 64 bytes from 112.80.248.76 (112.80.248.76): icmp_seq=7 ttl=55 time=106 ms

#microcom /dev/ttyUSB2 AT+CPIN? #SIM card verification

Polyhex Technology Co., Ltd. AT+CIMI #Query SIM card number CIMI AT+CGSN #Query module IMEI AT+CSQ #Query signal strength

microcom /dev/ttyUSB2	
CPIN: READY	
ĸ	
60065021200496	
x	
64394040047898	
ĸ	
CSQ: 23,99	
x	

4.11 Use of Lora Module

Connect the Lora module (take HLM5934-H01 as an example), connect the antenna adapter cable, and support the external antenna

The module is recognized as /dev/spidev1.0 under the system

<pre># ls /dev/spi</pre>	idev* -l					
crw	1 root	root	153,	0 Jan	1	1970 /dev/spidev0.0
crw	1 root	root	153,	1 Jan	1	1970 /dev/spidev1.0
#						

Our company can provide compiled executable scripts to start the lora module

<pre># cd lora/</pre>				
# ls				
<pre>global_conf.json</pre>	lora_pkt_fwd	reset_lgw.sh		
#./lora_pakt_fwd				

./lora_pkt_fwd &
*** Packet Forwarder ***
Version: 2.1.0
*** SX1302 HAL library version info *** Version: 2.1.0;

INRO: Little endian host
INRO: Little endian host
INRO: found configuration file global_conf.json, parsing it
INRO: global_conf.json does contain a JSON object named SX130x_conf, parsing SX1302 parameters
INRO: com type SFI, com path /dev/spidev1.0, lorawan_public 1, clksrc 0, full_duplex 0
INRO: antenna_gain 0 dBi
INRO: configuring legacy timestamp
INRO: no configuration for SX1261
INRO: configuring legacy timestamp
INRO: radio 0 enabled (type SX1250), center frequency 470600000, RSSI offset -207.000000, tx enabled 1, single input mode 1
INRO: radio 0 enabled (type SX1250), center frequency 47040000, RSSI offset -207.000000, tx enabled 0, single input mode 1
INRO: radio 1 enabled (type SX1250), center frequency 47040000, RSSI offset -207.000000, tx enabled 0, single input mode 1
INRO: Lora multi-SF channel 1> radio 0, IF -300000 Hz, 125 kHz bw, SF 5 to 12
INRO: Lora multi-SF channel 1> radio 0, IF -300000 Hz, 125 kHz bw, SF 5 to 12
INRO: Lora multi-SF channel 3> radio 0, IF 300000 Hz, 125 kHz bw, SF 5 to 12
INRO: Lora multi-SF channel 3> radio 0, IF 300000 Hz, 125 kHz bw, SF 5 to 12
INRO: Lora multi-SF channel 5> radio 1, IF -100000 Hz, 125 kHz bw, SF 5 to 12
INRO: Lora multi-SF channel 6> radio 1, IF -100000 Hz, 125 kHz bw, SF 5 to 12
INRO: Lora multi-SF channel 6> radio 1, IF -100000 Hz, 125 kHz bw, SF 5 to 12
INRO: Lora multi-SF channel 5> radio 1, IF -100000 Hz, 125 kHz bw, SF 5 to 12
INRO: Lora multi-SF channel 6> radio 1, IF -200000 Hz, 125 kHz bw, SF 5 to 12
INRO: Lora multi-SF channel 6> radio 1, IF -200000 Hz, 125 kHz bw, SF 5 to 12
INRO: Lora multi-SF channel 7> radio 1, IF -200000 Hz, 125 kHz bw, SF 5 to 12
INRO: Lora multi-SF channel 7> radio 1, IF -200000 Hz, 125 kHz bw, SF 5 to 12
INRO: Lora multi-SF channel 7> radio 1, IF 200000 Hz, 125 kHz bw, SF 5 to 12
INRO: Lora multi-SF channel 6> radio 1, IF 200000 Hz, 125 kHz bw, SF 5 to 12
INRO: Lora multi-SF channel 7> radio 1, IF 200000 Hz, 125 kHz bw, SF 5 to 12
INRO: Lora multi-SF channel 7> radio 1, IF 200000 Hz, 250 kHz bw, Version: 2.1.0; INFO: upstream FOSH_DATA time-out is configured to 100 ms INFO: packets received with a valid CRC will be forwarded INFO: packets received with a CRC error will NOT be forwarded INFO: packets received with no CRC will NOT be forwarded INFO: Beaconing period is configured to 0 seconds INFO: Beaconing signal will be emitted at 869525000 Hz INFO: Beaconing datarate is set to SF9 INFO: Beaconing datarate is set to SF9 INFO: Beaconing modulation bandwidth is set to 125000Hz INFO: Beaconing TX power is set to 14dBm INFO: Beaconing in power is set to Film INFO: Beaconing information descriptor is set to 0 INFO: global_conf.json does contain a JSON object named debug_conf, parsing debug parameters INFO: got 2 debug reference payload INFO: reference payload ID 1 is 0xCAFE1234 INFO: reference payload ID 1 is 0xCAFE2345 INFO: setting debug log file name to loragw_hal.log write command lora_en_off size=11 write command lora_pwd_off size=12 write command lora_pwd_on size=11 write command lora_pwc_on size=11 write command lora_rst_on size=10 write command lora_rst_on size=11 CoreCell reset through /dev/lora_reset... CoreCell power enable through /dev/lora_en... write command lora_en_on size=10 write command lora_rst_off size=12 write command lora_rst_off size=11 Opening SPI communication interface Note: chip version is 0x10 (v1.0) # INFO: Configuring SX1250_0 in single input mode INFO: Configuring SX1250_1 in single input mode INFO: using legacy timestamp INFO: LoRa Service modem: configuring preamble size to 8 symbols ARB: dual demodulation disabled for all SF INFO: [main] concentrator started, packet can now be received INFO: concentrator EUI: 0x0016c001f10a62ef

4.12 Verification of RTC

Chip model: HYM8563S Confirm that the HYM8653S driver module is loaded successfully #dmesg | grep rtc-hym8653

dmesg |grep rtc-hym8563
[2.699420] rtc-hym8563 1-0051: registered as rtc0
[2.705764] rtc-hym8563 1-0051: setting system clock to 2030-08-04T19:31:40
TC (1912102300)

Set and read RTC time #hwclock --systohc #hwclock

--show

hwclock --systohc
hwclock --show
Wed Nov 9 12:12:16 2022 0.000000 seconds
#

